Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666611

RESUMO

The yeast Metschnikowia fructicola was reported as an efficient biological control agent of postharvest diseases of fruits and vegetables, and it is the bases of the commercial formulated product "Shemer." Several mechanisms of action by which M. fructicola inhibits postharvest pathogens were suggested including iron-binding compounds, induction of defense signaling genes, production of fungal cell wall degrading enzymes and relatively high amounts of superoxide anions. We assembled the whole genome sequence of two strains of M. fructicola using PacBio and Illumina shotgun sequencing technologies. Using the PacBio, a high-quality draft genome consisting of 93 contigs, with an estimated genome size of approximately 26 Mb, was obtained. Comparative analysis of M. fructicola proteins with the other three available closely related genomes revealed a shared core of homologous proteins coded by 5,776 genes. Comparing the genomes of the two M. fructicola strains using a SNP calling approach resulted in the identification of 564,302 homologous SNPs with 2,004 predicted high impact mutations. The size of the genome is exceptionally high when compared with those of available closely related organisms, and the high rate of homology among M. fructicola genes points toward a recent whole-genome duplication event as the cause of this large genome. Based on the assembled genome, sequences were annotated with a gene description and gene ontology (GO term) and clustered in functional groups. Analysis of CAZymes family genes revealed 1,145 putative genes, and transcriptomic analysis of CAZyme expression levels in M. fructicola during its interaction with either grapefruit peel tissue or Penicillium digitatum revealed a high level of CAZyme gene expression when the yeast was placed in wounded fruit tissue.

2.
Pest Manag Sci ; 73(12): 2481-2494, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28618166

RESUMO

BACKGROUND: Aspergillus fumigatus is a widespread fungus that colonizes dead organic substrates but it can also cause fatal human diseases. Aspergilloses are treated with demethylation inhibitor (DMI) fungicides; however, resistant isolates appeared recently in the medical and also environmental area. The present study aims at molecular characterizing and quantifying A. fumigatus in major environmental habitats and determining its sensitivity to medical and agricultural DMI fungicides. RESULTS: A. fumigatus was isolated only rarely from soil and meadow/forest organic matter but high concentrations (103 to 107 cfu/g) were detected in substrates subjected to elevated temperatures, such as compost and silage. High genetic diversity of A. fumigatus from compost was found based on SSR markers, distinguishing among fungal isolates even when coming from the same substrate sample, while subclustering was observed based on mutations in cyp51A gene. Several cyp51A amino acid substitutions were found in 15 isolates, although all isolates were fully sensitive to the tested DMI fungicides, with exception of one isolate in combination with one fungicide. CONCLUSION: This study suggests that the tested A. fumigatus isolates collected in Italy, Spain and Hungary from the fungus' major living habitats (compost) and commercial growing substrates are not potential carriers for DMI resistance in the environment. © 2017 Society of Chemical Industry.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Microbiologia do Solo , Antifúngicos/química , Aspergillus fumigatus/classificação , Aspergillus fumigatus/isolamento & purificação , Compostagem , Desmetilação , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variação Genética , Pradaria
3.
Front Plant Sci ; 8: 654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496453

RESUMO

Rootstocks are among the main factors that influence grape development as well as fruit and wine composition. In this work, rootstock/scion interactions were studied using transcriptomic and metabolic approaches on leaves of the "Gaglioppo" variety, grafted onto 13 different rootstocks growing in the same vineyard. The whole leaf transcriptome of "Gaglioppo" grafted onto five selected rootstocks showed high variability in gene expression. In particular, significant modulation of transcripts linked to primary and secondary metabolism was observed. Interestingly, genes and metabolites involved in defense responses (e.g., stilbenes and defense genes) were strongly activated particularly in the GAG-41B combination, characterized in addition by the down-regulation of abscisic acid (ABA) metabolism. On the contrary, the leaves of "Gaglioppo" grafted onto 1103 Paulsen showed an opposite regulations of those transcripts and metabolites, together with the greater sensitivity to downy mildew in a preliminary in vitro assay. This study carried out an extensive transcriptomic analysis of rootstock effects on scion leaves, helping to unravel this complex interaction, and suggesting an interesting correlation among constitutive stilbenes, ABA compound, and disease susceptibility to a fungal pathogen.

4.
Front Biosci (Elite Ed) ; 9(2): 333-344, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28410155

RESUMO

Bakanae disease, one of the most noteworthy seedborne rice diseases, is caused by Fusarium fujikuroi, a member of the Gibberella fujikuroi species complex. The decreasing availability of chemical seed-dressing products over the last few years has raised the concerns of rice seed companies regarding bakanae disease. Therefore, new research trends require a deeper investigation into the main aspects of bakanae disease through interactions between rice and F. fujikuroi, in order to find new resistant or tolerant cultivars and alternative bakanae disease control strategies, as well as to develop more sensitive molecular diagnostic techniques. Here, some new aspects of F. fujikuroi epidemiology and pathogenicity, as well as its interactions with rice, are reported, and recent approaches applied to control bakanae disease are summarized.


Assuntos
Fusarium/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...